ユーザ用ツール

サイト用ツール


サイドバー

目次

機械学習とは

プログラミング無しで機械学習

機械学習プログラミング入門

初めてのKeras2.0

初めてのTensorflow(YouTube)

初めてのChainer2.0

初めてのビットコイン

ビットコイン用語集

初めてのSolidityプログラミング

初めての医療統計

初めてのエクセルで医療統計

初めてのEZRで医療統計

初めてのRStudioでレポート作成

初めてのImageJで画像解析

スマホアプリ作成ソフトIonic3

スマホアプリ作成ソフトIonic4

Ionicのためのjavascript tips

その他

NiftyCloudMobileBackend

税金など

Dokuwiki

sidebar

6_学習結果の保存_keras

(6)学習結果の保存(Keras)

Keras2でMNIST目次

Kerasプログラミングの全体図

以下をコピペするだけです。

#6 学習結果の保存(Keras)
### save model and weights
json_string = model.to_json()
open('apple_orange_model.json', 'w').write(json_string)
model.save_weights('apple_orange_weights.h5')

そのままです。学習モデルをjson形式で保存し、そのモデルに対応した学習結果のパラメータをh5形式で保存します。

次のpredict.pyで、新しい画像の予測(分類)を行う際に、このモデルとパラメータを読み込む予定です。

開発環境

Windows 8.1

Anaconda

Python 3.5

Tensorflow 1.4

Keras 2.0.9

Keras2.0のインストール方法はwindowsにkeras2.0をインストールをご覧下さい。

このページは、(5)結果の出力(Keras)の続きであり、今回は、結果の出力を行っていきます。

手順

0. 前回終了時の画面

(5)結果の出力(Keras)終了時の、以下のような状態から始めます。

1. 学習結果の保存

以下のコードを入力して、Shift + Enterを押します。

#6 学習結果の保存(Keras)
### save model and weights
json_string = model.to_json()
open('apple_orange_model.json', 'w').write(json_string)
model.save_weights('apple_orange_weights.h5')

以下のような画面になります。

Jupyter Notebook上では何も起こりませんが、

%ls

と入力して、Shift+Enterを押すと、以下のように表示されて、train_MNIST_MLP.ipynb(今、入力しているJupyter Notebookのファイル)と同じフォルダに、

"apple_orange_model.json" : モデルが記載されたjsonファイル
"apple_orange_weights.h5" : モデルのweight(学習結果)が記載されたバイナリデータ

の2つのファイルが作成されていることが分かります。

Kerasでの学習結果の出力の手順は上記でおしまいです。

初めての方は、次は、(7)推測(Keras)に進んでください。

参考文献

初めてKerasプログラミングをやるときの超おすすめ本。

 

リンク

6_学習結果の保存_keras.txt · 最終更新: 2018/10/07 (外部編集)