内容へ移動
サルでもわかる機械学習
ユーザ用ツール
ログイン
サイト用ツール
検索
ツール
文書の表示
以前のリビジョン
バックリンク
最近の変更
メディアマネージャー
サイトマップ
ログイン
>
最近の変更
メディアマネージャー
サイトマップ
トレース:
nnc_sony_で回帰分析
この文書は読取専用です。文書のソースを閲覧することは可能ですが、変更はできません。もし変更したい場合は管理者に連絡してください。
===== NNC(Neural Network Console)(SONY)で回帰分析 ===== 個人的に、画像から、数値を出したいとき、どのようにすればよいのか悩んでいました。 しかし、2017年8月時点、KerasやTensorflowでは、MNISTやCifar-10など、画像の分類問題はたくさんコードが転がっているのですが、回帰分析のコードをググっても、写経できそうなコードは見つけられませんでした。 よく、分類問題のニューラルネットワーク最後のソフトマックス関数を、恒等関数にすればよいと書いてあるのをみかけるが、なんか、どうしても実装できなませんでしたが、結局、損失関数 (loss function) として2乗和誤差 (mean squared error)を指定すればよいということが分かりました。 以下のリンクに、Neural Network Consoleでの実装方法を記載しましたので、もしよろしければご覧ください。 NeuralNetworkConsole(SONY)で回帰分析(1) 2017/8/21\\ http://twosquirrel.mints.ne.jp/?p=19839 {{:pasted:20170821-002419.png}} チュートリアルの、02_binary_cnn.sdcproj の、Sigmoid と、BinaryCrossEntropyを削除して、その代わりに、SquaredErrorを入れれば、MNISTの4と9の分類問題が、そのまま回帰分析になります。 {{:pasted:20170821-002221.png}} Training, Evaluationを行った結果が以下のようになります。 {{:pasted:20170821-002819.png}} 実装に役立つ機械学習の理論の勉強については、やはり、以下の本が一番のお勧めです。 <html><a href="https://www.amazon.co.jp/%E3%82%BC%E3%83%AD%E3%81%8B%E3%82%89%E4%BD%9C%E3%82%8BDeep-Learning-Python%E3%81%A7%E5%AD%A6%E3%81%B6%E3%83%87%E3%82%A3%E3%83%BC%E3%83%97%E3%83%A9%E3%83%BC%E3%83%8B%E3%83%B3%E3%82%B0%E3%81%AE%E7%90%86%E8%AB%96%E3%81%A8%E5%AE%9F%E8%A3%85-%E6%96%8E%E8%97%A4-%E5%BA%B7%E6%AF%85/dp/4873117585/ref=as_li_ss_il?_encoding=UTF8&psc=1&refRID=QP0FZTYT6QNR4YDRBQF8&linkCode=li3&tag=twosquirrel-22&linkId=dc0c774501f7190459105700cbdb5a42"><img src="http://ws-fe.amazon-adsystem.com/widgets/q?_encoding=UTF8&ASIN=4873117585&Format=_SL250_&ID=AsinImage&MarketPlace=JP&ServiceVersion=20070822&WS=1&tag=twosquirrel-22" alt="" /></a><img src="https://ir-jp.amazon-adsystem.com/e/ir?t=twosquirrel-22&l=li3&o=9&a=4873117585" alt="" width="1" height="1" /> </html> ゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理論と実装 単行本(ソフトカバー) – 2016/9/24\\ 斎藤 康毅 (著)\\ 3672円 ===== 参考 ===== 公式マニュアル\\ https://blog.dl.sony.com/259/\\ 日本語のドキュメントがあって、しかも、読めば読むほど、非常に分かりやすく丁寧に書かれている!とにかく、公式マニュアルを繰り返し読んで、Neural Network Consoleを実行していくのが一番です。 http://s0sem0y.hatenablog.com/entry/2016/05/22/215529\\ 2016-05-22 ニューラルネットの表現力と回帰分析\\ =>上の記事によると、ニューラルネットワークで回帰分析を行う意味はあまりないのかも?でも、個人的な好奇心でやってみたかったので、やってみました。 ===== リンク ===== 次: <wrap hi> </wrap>\\ [[sidebar|目次]]\\ 前: <wrap hi> [[NNC(SONY)で自前データで画像分類]] </wrap>\\
nnc_sony_で回帰分析.txt
· 最終更新: 2018/10/07 (外部編集)
ページ用ツール
文書の表示
以前のリビジョン
バックリンク
文書の先頭へ