内容へ移動
サルでもわかる機械学習
ユーザ用ツール
ログイン
サイト用ツール
検索
ツール
文書の表示
以前のリビジョン
バックリンク
最近の変更
メディアマネージャー
サイトマップ
ログイン
>
最近の変更
メディアマネージャー
サイトマップ
トレース:
rでt検定
この文書は読取専用です。文書のソースを閲覧することは可能ですが、変更はできません。もし変更したい場合は管理者に連絡してください。
====== Rでt検定 ====== 独立した2群間の連続変数の平均値を比較する方法 1.t検定\\ 2.Welch検定\\ 3.Mann-Whitney U検定\\ 2群間に対応がある場合(インスリン導入前後のHbA1cの値など)は、「対応のあるt検定」へ。 ===== 1.どのような場合にt検定を用いることができるのか? ===== 2群が独立しており、 (1)各群のデータが正規分布に従う => 両群の分散が等しければ、t検定。分散が等しくなければ、Welch検定を用いる。 (2)各群のデータが正規分布に従わない、あるいは順序変数 => Mann-Whitney U検定 ===== 2.各群が正規分布に従うかどうかの判定”Kolmogorov-Smirnov検定(ks.test()関数)” ===== ===== 3.正規分布に従う2群の分散が等しいかどうかの判定”F検定(var.test()関数)” ===== F検定の後にt検定することについては、議論があるらしいが、気にしないことにする。 標本の分散が帰無仮説に従うかどうかを検定\\ F 検定\\ 2018.01.12\\ https://stats.biopapyrus.jp/stats/f-test.html\\ {{:pasted:20180203-221541.png}} p>0.05であれば、2群は分散が等しいと言えるので、2群の平均値を比較するときはt検定を用いる。 p>0.05であれば、2群は分散が等しいとは言えないので、2群の平均値を比較するときはWelch検定を用いることになる。 ===== 4.t検定"t.test(group1, group2, paired=F)" ===== p<0.05であれば、2群の平均値に有意差あり。 p>0.05であれば、2群の平均値に有意差無し。 <code> DM_pre <- c(0.0002458, 0.0001889, 0.000129) DM_1POD <- c(0.0001442, 0.00007158, 0.0001055) group1 <- DM_pre group2 <- DM_1POD t.test(group1, group2, paired=F) </code> R Studioでの実行結果(F検定は行っていない) {{:pasted:20180409-084509.png}} ===== 5.Welch検定"t.test(group1, group2, var.equal=F, paired=F)" ===== t.test()関数の中で、var.equal=F と入れればWelch検定ができる。 p<0.05であれば、2群の平均値に有意差あり。 p>0.05であれば、2群の平均値に有意差無し。 ===== 6.Mann-Whitney U検定 ===== http://cse.naro.affrc.go.jp/takezawa/r-tips/r/65.html 上記サイトでは、ウィルコクソンの順位和検定と、マン・ホイットニーの U 検定が同じであると記載されている. Wilcoxon-Mann-Whitney検定(WMW検定)\\ https://oku.edu.mie-u.ac.jp/~okumura/stat/wmw.html Rによるウィルコクソンの順位和検定\\ http://data-science.gr.jp/implementation/ist_r_wilcoxon_rank_sum_test.html <code> ウィルコクソンの順位和検定は2群間に対応がない場合に使う.この検定法はパラメトリック検定でいうところのスチューデントのt検定とかウェルチのt検定に相当する. </code> 上記サイトよりコードを引用。 <code> install.packages("exactRankTests", repos="http://cran.ism.ac.jp/") library(exactRankTests) wilcox.exact(x=vx,y=vy,paired=F) </code> ===== memo ===== ks.test()関数を用いるときは、下記コードでは、y1["sBP_00pre"]ではエラーになる。正しくは、y1$sBP_00preのように記載する。データフレームとリストの違い? <code> y1 <- subset(x2, Hb_Improve=="TRUE") y1 <- y1$sBP_00pre ks.test(x=y1,y="pnorm",mean=mean(y1),sd=sd(y1)) </code> ===== 参考リンク ===== Rによるウェルチのt検定\\ http://data-science.gr.jp/implementation/ist_r_welch_t_test.html\\ {{:pasted:20180217-000345.png}} ===== 参考文献 ===== EZRで行う場合は、下の本のp92以降が非常に分かりやすいです。 <html> <iframe style="width:120px;height:240px;" marginwidth="0" marginheight="0" scrolling="no" frameborder="0" src="//rcm-fe.amazon-adsystem.com/e/cm?lt1=_blank&bc1=000000&IS2=1&bg1=FFFFFF&fc1=000000&lc1=0000FF&t=twosquirrel-22&o=9&p=8&l=as4&m=amazon&f=ifr&ref=as_ss_li_til&asins=4524261583&linkId=404872973e33a89d56584fa9ee93ca22"></iframe> </html>
rでt検定.txt
· 最終更新: 2018/10/07 (外部編集)
ページ用ツール
文書の表示
以前のリビジョン
バックリンク
文書の先頭へ