ユーザ用ツール

サイト用ツール


おすすめの機械学習入門書2017年版

差分

このページの2つのバージョン間の差分を表示します。

この比較画面にリンクする

両方とも前のリビジョン 前のリビジョン
おすすめの機械学習入門書2017年版 [2019/10/23]
adash333 [図解速習DEEP LEARNING]
おすすめの機械学習入門書2017年版 [2019/10/23] (現在)
adash333 [図解速習DEEP LEARNING]
行 22: 行 22:
   -GoogleColaboratoryを用いてオンラインで無料で機械学習プログラミングを行う、具体的な方法   -GoogleColaboratoryを用いてオンラインで無料で機械学習プログラミングを行う、具体的な方法
 が記載されています。 が記載されています。
-この本の第1章で、『機械学習、Deep Learningって何?どんなことができるの?』のイメージをつかみます。第2章以降では、実際に手を動かしてGoogleColaboratory上で、フレームワークKerasを用いたpythonプログラミングにより、無料で、Deep Learningを実行します。しかし、コードを写経するだけでは、いまいち理解が難しいと思いますので、この本を読んだら、ぜひ、次の、[[ +この本の第1章で、『機械学習、Deep Learningって何?どんなことができるの?』のイメージをつかみます。第2章以降では、実際に手を動かしてGoogleColaboratory上で、フレームワークKerasを用いたpythonプログラミングにより、無料で、Deep Learningを実行します。しかし、コードを写経するだけでは、いまいち理解が難しいと思いますので、この本を読んだら、ぜひ、次の、<wrap hi>[[https://amzn.to/2BySYeR|ゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理論と実装]]</wrap>
- +
- +
-|ゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理論と実装]] +
- +
 を読んで頂くことをお勧めします。 を読んで頂くことをお勧めします。
  

おすすめの機械学習入門書2017年版.txt · 最終更新: 2019/10/23 by adash333