この文書の現在のバージョンと選択したバージョンの差分を表示します。
両方とも前のリビジョン 前のリビジョン 次のリビジョン | 前のリビジョン | ||
おすすめの機械学習入門書2017年版 [2017/06/03] adash333 [サンプルコードのリンク] |
おすすめの機械学習入門書2017年版 [2018/10/07] (現在) |
||
---|---|---|---|
ライン 1: | ライン 1: | ||
- | =====おすすめの機械学習入門書2017年版===== | + | =====おすすめの機械学習入門書2018年版===== |
+ | 仕事でディープラーニングを使用するのであれば、理論と背景について、ある程度は知っておいて損はないと思いますので、1冊目として、<wrap hi>[[http://amzn.to/2BliYLS|ゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理論と実装]]</wrap>をお勧めします。 | ||
+ | |||
+ | 理論は全くいらないという方、とりあえず何でもいいからすぐにディープラーニングで結果を出さないといけない方は、先に、<wrap hi>[[http://amzn.to/2nQNp54|ソニー開発のNeural Network Console入門 ―数式なし、コーディングなしのディープラーニング]]</wrap>がを読みながら、手を動かしてみるのがよいです。 | ||
本の読み方としては、1回目では全部理解しようとしないで、分からないところはさらーっと流して、とにかく最終章まで目を通し、概要をつかむ。1回目は、ちんぷんかんぷんかもしれない。2回目は、好きなところからソースコードをサポートサイトからダウンロードして実行。3回目以降に自分でコードを手書き入力、がおすすめです。 | 本の読み方としては、1回目では全部理解しようとしないで、分からないところはさらーっと流して、とにかく最終章まで目を通し、概要をつかむ。1回目は、ちんぷんかんぷんかもしれない。2回目は、好きなところからソースコードをサポートサイトからダウンロードして実行。3回目以降に自分でコードを手書き入力、がおすすめです。 | ||
ライン 11: | ライン 14: | ||
以下に、おすすめの本を記載させていただきます。 | 以下に、おすすめの本を記載させていただきます。 | ||
- | 一冊だけお勧めするとしたら、最初にご紹介する、「ゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理論と実装」が絶対にお勧めです。 | + | 一冊だけお勧めするとしたら、最初にご紹介する、<wrap hi>[[http://amzn.to/2BliYLS|ゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理論と実装]]</wrap>が絶対にお勧めです。 |
=====ゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理論と実装===== | =====ゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理論と実装===== | ||
ライン 38: | ライン 41: | ||
2017年05月06日に更新\\ | 2017年05月06日に更新\\ | ||
http://qiita.com/rkosaka/items/35e61d5c9ceab78860bf | http://qiita.com/rkosaka/items/35e61d5c9ceab78860bf | ||
+ | ===== ソニー開発のNeural Network Console入門 ―数式なし、コーディングなしのディープラーニング ===== | ||
+ | 2018年1月に、以下の本が発売されました。プログラミング無しで、とりあえずディープラーニングを実践したい方には、まずこの本がお勧めだと思います。 | ||
+ | |||
+ | <html> | ||
+ | <a href="https://www.amazon.co.jp/%E3%82%BD%E3%83%8B%E3%83%BC%E9%96%8B%E7%99%BA%E3%81%AENeural-Network-Console%E5%85%A5%E9%96%80-%E2%80%95%E6%95%B0%E5%BC%8F%E3%81%AA%E3%81%97%E3%80%81%E3%82%B3%E3%83%BC%E3%83%87%E3%82%A3%E3%83%B3%E3%82%B0%E3%81%AA%E3%81%97%E3%81%AE%E3%83%87%E3%82%A3%E3%83%BC%E3%83%97%E3%83%A9%E3%83%BC%E3%83%8B%E3%83%B3%E3%82%B0-%E8%B6%B3%E7%AB%8B/dp/4865941142/ref=as_li_ss_il?s=digital-text&ie=UTF8&qid=1518306617&sr=8-1&keywords=NNC%E3%80%80SONY&linkCode=li3&tag=twosquirrel-22&linkId=86d2050191e8e62c1f45316d0747c038" target="_blank"><img border="0" src="//ws-fe.amazon-adsystem.com/widgets/q?_encoding=UTF8&ASIN=4865941142&Format=_SL250_&ID=AsinImage&MarketPlace=JP&ServiceVersion=20070822&WS=1&tag=twosquirrel-22" ></a><img src="https://ir-jp.amazon-adsystem.com/e/ir?t=twosquirrel-22&l=li3&o=9&a=4865941142" width="1" height="1" border="0" alt="" style="border:none !important; margin:0px !important;" /> | ||
+ | </html> | ||
+ | |||
=====はじめての深層学習プログラミング===== | =====はじめての深層学習プログラミング===== | ||
ライン 150: | ライン 160: | ||
<wrap hi>[[機械学習サンプルコードのリンク2017年版]]</wrap> | <wrap hi>[[機械学習サンプルコードのリンク2017年版]]</wrap> | ||
+ | |||
+ | ===== リンク ===== | ||
+ | 次: | ||
+ | <wrap hi> | ||
+ | [[CourseraのMachineLearning動画の解説や感想のリンク集|CourseraのMachineLearning動画]] | ||
+ | </wrap>\\ | ||
+ | [[sidebar|目次]]\\ | ||
+ | 前: | ||
+ | <wrap hi> | ||
+ | [[index.html|機械学習って何?]] | ||
+ | </wrap>\\ |