サイドバー

目次

機械学習とは

プログラミング無しで機械学習

機械学習プログラミング入門

初めてのKeras2.0

初めてのTensorflow(YouTube)

初めてのChainer2.0

初めてのビットコイン

ビットコイン用語集

初めてのSolidityプログラミング

初めての医療統計

初めてのエクセルで医療統計

初めてのEZRで医療統計

初めてのRStudioでレポート作成

スマホアプリ作成ソフトIonic3

スマホアプリ作成ソフトIonic4

Ionicのためのjavascript tips

その他

NiftyCloudMobileBackend

税金など

Dokuwiki

rでt検定

以前のリビジョンの文書です


Rでt検定

独立した2群間の連続変数の平均値を比較する方法

1.t検定
2.Welch検定
3.Mann-Whitney U検定

2群間に対応がある場合(インスリン導入前後のHbA1cの値など)は、「対応のあるt検定」へ。

1.どのような場合にt検定を用いることができるのか?

2群が独立しており、

(1)各群のデータが正規分布に従う ⇒ 両群の分散が等しければ、t検定。分散が等しくなければ、Welch検定を用いる。

(2)各群のデータが正規分布に従わない、あるいは順序変数 ⇒ Mann-Whitney U検定

2.各群が正規分布に従うかどうかの判定”Kolmogorov-Smirnov検定(ks.test()関数)”

memo

y1 <- subset(x2, Hb_Improve=="TRUE")
y1 <- y1$sBP_00pre
ks.test(x=y1,y="pnorm",mean=mean(y1),sd=sd(y1))

参考文献

EZRで行う場合は、下の本のp92以降が非常に分かりやすいです。

rでt検定.1517662878.txt.gz · 最終更新: 2018/10/07 (外部編集)