ユーザ用ツール

サイト用ツール


サイドバー

目次

機械学習とは

プログラミング無しで機械学習

機械学習プログラミング入門

初めてのKeras2.0

初めてのTensorflow(YouTube)

初めてのChainer2.0

初めてのビットコイン

ビットコイン用語集

初めてのSolidityプログラミング

初めての医療統計

初めてのエクセルで医療統計

初めてのEZRで医療統計

初めてのRStudioでレポート作成

初めてのImageJで画像解析

スマホアプリ作成ソフトIonic3

スマホアプリ作成ソフトIonic4

Ionicのためのjavascript tips

その他

NiftyCloudMobileBackend

税金など

Dokuwiki

sidebar

5_学習_trainerを利用しない場合

(4)モデルと最適化アルゴリズムの設定

<ChainerでMNIST目次>

(0)Chainer2プログラミングの全体図

(1)Chainer2を使用するためのimport文

(2)データの準備・設定

(3)モデルの記述

(4)モデルと最適化アルゴリズムの設定

(5)学習(Trainerを利用しない場合)

(6)結果の出力

#5 学習
iterator = iterators.SerialIterator(train, 1000)
updater = training.StandardUpdater(iterator, optimizer)
trainer = training.Trainer(updater, (10, 'epoch'))
trainer.extend(extensions.ProgressBar())

trainer.run()

開発環境

Windows 8.1

Anaconda

Python 3.5

Chainer 2.0

Chainerのインストール方法はChainer2.0をWindowsにインストールをご覧下さい。

このページは、(4)モデルと最適化アルゴリズムの設定の続きであり、今回は、MNISTの学習(trainerを利用しない場合)の記述を行っていきます。

手順

0. 前回終了時の画面

(4)モデルと最適化アルゴリズムの設定終了時の、以下のような状態から始めます。

1. 学習

以下のコードを入力して、Shift + Enterを押します。

以下の例は、Trainerを利用する方法となっています。

#5 学習
iterator = iterators.SerialIterator(train, 1000)
updater = training.StandardUpdater(iterator, optimizer)
trainer = training.Trainer(updater, (10, 'epoch'))
trainer.extend(extensions.ProgressBar())

trainer.run()

すると、以下のような画面になります。

次は、(6)結果の出力の設定に進んでください。

参考文献

Chainer: ビギナー向けチュートリアル Vol.1
mitmul 2017年05月18日に更新
https://qiita.com/mitmul/items/eccf4e0a84cb784ba84a

Chainer2に関しては、以下の本がかなりおすすめです。

Deep Learningについての理論については、以下の本が超お勧めです。

リンク

5_学習_trainerを利用しない場合.txt · 最終更新: 2018/10/07 (外部編集)