5_学習_trainerを利用しない場合

(4)モデルと最適化アルゴリズムの設定

<ChainerでMNIST目次>

(0)Chainer2プログラミングの全体図

(1)Chainer2を使用するためのimport文

(2)データの準備・設定

(3)モデルの記述

(4)モデルと最適化アルゴリズムの設定

(5)学習(Trainerを利用しない場合)

(6)結果の出力

#5 学習
iterator = iterators.SerialIterator(train, 1000)
updater = training.StandardUpdater(iterator, optimizer)
trainer = training.Trainer(updater, (10, 'epoch'))
trainer.extend(extensions.ProgressBar())

trainer.run()

開発環境

Windows 8.1

Anaconda

Python 3.5

Chainer 2.0

Chainerのインストール方法はChainer2.0をWindowsにインストールをご覧下さい。

このページは、(4)モデルと最適化アルゴリズムの設定の続きであり、今回は、MNISTの学習(trainerを利用しない場合)の記述を行っていきます。

手順

0. 前回終了時の画面

(4)モデルと最適化アルゴリズムの設定終了時の、以下のような状態から始めます。

1. 学習

以下のコードを入力して、Shift + Enterを押します。

以下の例は、Trainerを利用する方法となっています。

#5 学習
iterator = iterators.SerialIterator(train, 1000)
updater = training.StandardUpdater(iterator, optimizer)
trainer = training.Trainer(updater, (10, 'epoch'))
trainer.extend(extensions.ProgressBar())

trainer.run()

すると、以下のような画面になります。

次は、(6)結果の出力の設定に進んでください。

参考文献

Chainer: ビギナー向けチュートリアル Vol.1
mitmul 2017年05月18日に更新
https://qiita.com/mitmul/items/eccf4e0a84cb784ba84a

Chainer2に関しては、以下の本がかなりおすすめです。

<html>
<iframe style=“width:120px;height:240px;” marginwidth=“0” marginheight=“0” scrolling=“no” frameborder=“0” src=“rcm-fe.amazon-adsystem.com/e/cm?lt1=_blank&bc1=000000&IS2=1&bg1=FFFFFF&fc1=000000&lc1=0000FF&t=twosquirrel-22&o=9&p=8&l=as4&m=amazon&f=ifr&ref=as_ss_li_til&asins=B01NBMKH21&linkId=a7a35903a4c55f62d8aa012c3d0277d8”></iframe>
</html>

Deep Learningについての理論については、以下の本が超お勧めです。

<html>
<iframe style=“width:120px;height:240px;” marginwidth=“0” marginheight=“0” scrolling=“no” frameborder=“0” src=“
rcm-fe.amazon-adsystem.com/e/cm?lt1=_blank&bc1=000000&IS2=1&bg1=FFFFFF&fc1=000000&lc1=0000FF&t=twosquirrel-22&o=9&p=8&l=as4&m=amazon&f=ifr&ref=as_ss_li_til&asins=4873117585&linkId=603bea27ea1777eb662830c5609200a1”></iframe>
</html>

リンク

5_学習_trainerを利用しない場合.txt · 最終更新: 2018/10/07 by 127.0.0.1

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki